Overview

Brought to you by YData

Dataset statistics

Number of variables32
Number of observations7955
Missing cells29544
Missing cells (%)11.6%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory2.0 MiB
Average record size in memory264.0 B

Variable types

Text11
Categorical6
Numeric11
Boolean3
Unsupported1

Alerts

isTrain has constant value "True" Constant
isMetro has constant value "True" Constant
stops_lines_isNight has constant value "True" Constant
avgJtskX is highly overall correlated with avgLon and 1 other fieldsHigh correlation
avgJtskY is highly overall correlated with avgLat and 1 other fieldsHigh correlation
avgLat is highly overall correlated with avgJtskY and 1 other fieldsHigh correlation
avgLon is highly overall correlated with avgJtskX and 1 other fieldsHigh correlation
cis is highly overall correlated with idosCategory and 1 other fieldsHigh correlation
districtCode is highly overall correlated with avgJtskX and 4 other fieldsHigh correlation
idosCategory is highly overall correlated with cis and 1 other fieldsHigh correlation
jtskX is highly overall correlated with lonHigh correlation
jtskY is highly overall correlated with latHigh correlation
lat is highly overall correlated with jtskYHigh correlation
lon is highly overall correlated with jtskXHigh correlation
mainTrafficType is highly overall correlated with cis and 1 other fieldsHigh correlation
node is highly overall correlated with districtCodeHigh correlation
stops_lines_id is highly overall correlated with stops_lines_typeHigh correlation
stops_lines_type is highly overall correlated with stops_lines_idHigh correlation
idosCategory is highly imbalanced (62.0%) Imbalance
mainTrafficType is highly imbalanced (79.4%) Imbalance
stops_lines_type is highly imbalanced (72.4%) Imbalance
isTrain has 7367 (92.6%) missing values Missing
platform has 291 (3.7%) missing values Missing
isMetro has 7887 (99.1%) missing values Missing
stops_lines_id has 99 (1.2%) missing values Missing
stops_lines_name has 99 (1.2%) missing values Missing
stops_lines_type has 99 (1.2%) missing values Missing
stops_lines_direction has 99 (1.2%) missing values Missing
stops_lines_direction2 has 6212 (78.1%) missing values Missing
stops_lines_isNight has 7391 (92.9%) missing values Missing
id has unique values Unique
gtfsIds is an unsupported type, check if it needs cleaning or further analysis Unsupported

Reproduction

Analysis started2024-11-11 11:53:53.100315
Analysis finished2024-11-11 11:54:18.733698
Duration25.63 seconds
Software versionydata-profiling vv4.12.0
Download configurationconfig.json

Variables

name
Text

Distinct7754
Distinct (%)97.5%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:18.936499image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length42
Median length33
Mean length15.689252
Min length3

Characters and Unicode

Total characters124808
Distinct characters92
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique7571 ?
Unique (%)95.2%

Sample

1st rowAdamov
2nd rowAlbertov
3rd rowAmetystová
4th rowAmforová
5th rowAnděl
ValueCountFrequency (%)
u 167
 
1.4%
dolní 74
 
0.6%
nad 67
 
0.6%
na 64
 
0.5%
náměstí 60
 
0.5%
lhota 56
 
0.5%
nádraží 49
 
0.4%
mladá 47
 
0.4%
kutná 47
 
0.4%
pod 44
 
0.4%
Other values (8078) 11136
94.3%
2024-11-11T12:54:19.667497image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
o 9770
 
7.8%
e 8724
 
7.0%
a 6840
 
5.5%
n 5863
 
4.7%
, 5680
 
4.6%
i 5666
 
4.5%
c 5029
 
4.0%
v 4949
 
4.0%
l 4731
 
3.8%
r 4606
 
3.7%
Other values (82) 62950
50.4%

Most occurring categories

ValueCountFrequency (%)
(unknown) 124808
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
o 9770
 
7.8%
e 8724
 
7.0%
a 6840
 
5.5%
n 5863
 
4.7%
, 5680
 
4.6%
i 5666
 
4.5%
c 5029
 
4.0%
v 4949
 
4.0%
l 4731
 
3.8%
r 4606
 
3.7%
Other values (82) 62950
50.4%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 124808
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
o 9770
 
7.8%
e 8724
 
7.0%
a 6840
 
5.5%
n 5863
 
4.7%
, 5680
 
4.6%
i 5666
 
4.5%
c 5029
 
4.0%
v 4949
 
4.0%
l 4731
 
3.8%
r 4606
 
3.7%
Other values (82) 62950
50.4%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 124808
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
o 9770
 
7.8%
e 8724
 
7.0%
a 6840
 
5.5%
n 5863
 
4.7%
, 5680
 
4.6%
i 5666
 
4.5%
c 5029
 
4.0%
v 4949
 
4.0%
l 4731
 
3.8%
r 4606
 
3.7%
Other values (82) 62950
50.4%

districtCode
Categorical

High correlation 

Distinct36
Distinct (%)0.5%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
AB
1459 
BN
760 
PB
678 
PH
548 
KH
480 
Other values (31)
4030 

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters15910
Distinct characters19
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowKH
2nd rowAB
3rd rowAB
4th rowAB
5th rowAB

Common Values

ValueCountFrequency (%)
AB 1459
18.3%
BN 760
 
9.6%
PB 678
 
8.5%
PH 548
 
6.9%
KH 480
 
6.0%
MB 463
 
5.8%
PZ 449
 
5.6%
KD 420
 
5.3%
ME 375
 
4.7%
BE 356
 
4.5%
Other values (26) 1967
24.7%

Length

2024-11-11T12:54:19.823590image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
ab 1459
18.3%
bn 760
 
9.6%
pb 678
 
8.5%
ph 548
 
6.9%
kh 480
 
6.0%
mb 463
 
5.8%
pz 449
 
5.6%
kd 420
 
5.3%
me 375
 
4.7%
be 356
 
4.5%
Other values (26) 1967
24.7%

Most occurring characters

ValueCountFrequency (%)
B 4103
25.8%
A 1891
11.9%
P 1854
11.7%
K 1284
 
8.1%
N 1221
 
7.7%
H 1113
 
7.0%
M 903
 
5.7%
E 799
 
5.0%
Z 449
 
2.8%
D 431
 
2.7%
Other values (9) 1862
11.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 15910
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
B 4103
25.8%
A 1891
11.9%
P 1854
11.7%
K 1284
 
8.1%
N 1221
 
7.7%
H 1113
 
7.0%
M 903
 
5.7%
E 799
 
5.0%
Z 449
 
2.8%
D 431
 
2.7%
Other values (9) 1862
11.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 15910
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
B 4103
25.8%
A 1891
11.9%
P 1854
11.7%
K 1284
 
8.1%
N 1221
 
7.7%
H 1113
 
7.0%
M 903
 
5.7%
E 799
 
5.0%
Z 449
 
2.8%
D 431
 
2.7%
Other values (9) 1862
11.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 15910
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
B 4103
25.8%
A 1891
11.9%
P 1854
11.7%
K 1284
 
8.1%
N 1221
 
7.7%
H 1113
 
7.0%
M 903
 
5.7%
E 799
 
5.0%
Z 449
 
2.8%
D 431
 
2.7%
Other values (9) 1862
11.7%

idosCategory
Categorical

High correlation  Imbalance 

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
301003.0
7367 
600003.0
 
588

Length

Max length8
Median length8
Mean length8
Min length8

Characters and Unicode

Total characters63640
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row301003.0
2nd row301003.0
3rd row301003.0
4th row301003.0
5th row301003.0

Common Values

ValueCountFrequency (%)
301003.0 7367
92.6%
600003.0 588
 
7.4%

Length

2024-11-11T12:54:19.925683image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2024-11-11T12:54:20.013111image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
ValueCountFrequency (%)
301003.0 7367
92.6%
600003.0 588
 
7.4%

Most occurring characters

ValueCountFrequency (%)
0 32408
50.9%
3 15322
24.1%
. 7955
 
12.5%
1 7367
 
11.6%
6 588
 
0.9%

Most occurring categories

ValueCountFrequency (%)
(unknown) 63640
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
0 32408
50.9%
3 15322
24.1%
. 7955
 
12.5%
1 7367
 
11.6%
6 588
 
0.9%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 63640
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
0 32408
50.9%
3 15322
24.1%
. 7955
 
12.5%
1 7367
 
11.6%
6 588
 
0.9%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 63640
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
0 32408
50.9%
3 15322
24.1%
. 7955
 
12.5%
1 7367
 
11.6%
6 588
 
0.9%
Distinct7825
Distinct (%)98.4%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:20.540989image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length45
Median length33
Mean length15.987178
Min length3

Characters and Unicode

Total characters127178
Distinct characters92
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique7695 ?
Unique (%)96.7%

Sample

1st rowAdamov
2nd rowAlbertov
3rd rowAmetystová
4th rowAmforová
5th rowAnděl
ValueCountFrequency (%)
u 168
 
1.4%
bn 81
 
0.7%
dolní 74
 
0.6%
na 64
 
0.5%
náměstí 60
 
0.5%
pz 60
 
0.5%
lhota 56
 
0.5%
nádraží 48
 
0.4%
mladá 47
 
0.4%
kutná 47
 
0.4%
Other values (8113) 11554
94.2%
2024-11-11T12:54:20.964944image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
o 9756
 
7.7%
e 8731
 
6.9%
a 6786
 
5.3%
n 5863
 
4.6%
, 5682
 
4.5%
i 5668
 
4.5%
c 5034
 
4.0%
v 4941
 
3.9%
l 4732
 
3.7%
r 4600
 
3.6%
Other values (82) 65385
51.4%

Most occurring categories

ValueCountFrequency (%)
(unknown) 127178
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
o 9756
 
7.7%
e 8731
 
6.9%
a 6786
 
5.3%
n 5863
 
4.6%
, 5682
 
4.5%
i 5668
 
4.5%
c 5034
 
4.0%
v 4941
 
3.9%
l 4732
 
3.7%
r 4600
 
3.6%
Other values (82) 65385
51.4%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 127178
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
o 9756
 
7.7%
e 8731
 
6.9%
a 6786
 
5.3%
n 5863
 
4.6%
, 5682
 
4.5%
i 5668
 
4.5%
c 5034
 
4.0%
v 4941
 
3.9%
l 4732
 
3.7%
r 4600
 
3.6%
Other values (82) 65385
51.4%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 127178
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
o 9756
 
7.7%
e 8731
 
6.9%
a 6786
 
5.3%
n 5863
 
4.6%
, 5682
 
4.5%
i 5668
 
4.5%
c 5034
 
4.0%
v 4941
 
3.9%
l 4732
 
3.7%
r 4600
 
3.6%
Other values (82) 65385
51.4%
Distinct7749
Distinct (%)97.4%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:21.582480image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length56
Median length43
Mean length16.62841
Min length3

Characters and Unicode

Total characters132279
Distinct characters92
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique7561 ?
Unique (%)95.0%

Sample

1st rowAdamov
2nd rowAlbertov
3rd rowAmetystová
4th rowAmforová
5th rowAnděl
ValueCountFrequency (%)
nad 347
 
2.7%
u 170
 
1.3%
stanice 118
 
0.9%
nádraží 86
 
0.7%
náměstí 84
 
0.7%
zastávka 76
 
0.6%
pod 74
 
0.6%
dolní 74
 
0.6%
na 64
 
0.5%
úřad 59
 
0.5%
Other values (8120) 11602
91.0%
2024-11-11T12:54:22.100408image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
o 10244
 
7.7%
e 9788
 
7.4%
a 7863
 
5.9%
n 6498
 
4.9%
i 6055
 
4.6%
, 5680
 
4.3%
v 5345
 
4.0%
c 5247
 
4.0%
4803
 
3.6%
l 4779
 
3.6%
Other values (82) 65977
49.9%

Most occurring categories

ValueCountFrequency (%)
(unknown) 132279
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
o 10244
 
7.7%
e 9788
 
7.4%
a 7863
 
5.9%
n 6498
 
4.9%
i 6055
 
4.6%
, 5680
 
4.3%
v 5345
 
4.0%
c 5247
 
4.0%
4803
 
3.6%
l 4779
 
3.6%
Other values (82) 65977
49.9%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 132279
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
o 10244
 
7.7%
e 9788
 
7.4%
a 7863
 
5.9%
n 6498
 
4.9%
i 6055
 
4.6%
, 5680
 
4.3%
v 5345
 
4.0%
c 5247
 
4.0%
4803
 
3.6%
l 4779
 
3.6%
Other values (82) 65977
49.9%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 132279
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
o 10244
 
7.7%
e 9788
 
7.4%
a 7863
 
5.9%
n 6498
 
4.9%
i 6055
 
4.6%
, 5680
 
4.3%
v 5345
 
4.0%
c 5247
 
4.0%
4803
 
3.6%
l 4779
 
3.6%
Other values (82) 65977
49.9%
Distinct7884
Distinct (%)99.1%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:22.785839image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length45
Median length33
Mean length16.045255
Min length3

Characters and Unicode

Total characters127640
Distinct characters92
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique7813 ?
Unique (%)98.2%

Sample

1st rowAdamov
2nd rowAlbertov
3rd rowAmetystová
4th rowAmforová
5th rowAnděl
ValueCountFrequency (%)
u 168
 
1.4%
bn 81
 
0.7%
dolní 74
 
0.6%
vlak 66
 
0.5%
na 64
 
0.5%
náměstí 60
 
0.5%
pz 60
 
0.5%
lhota 56
 
0.5%
nádraží 48
 
0.4%
mladá 47
 
0.4%
Other values (8114) 11601
94.1%
2024-11-11T12:54:23.428143image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
o 9756
 
7.6%
e 8731
 
6.8%
a 6852
 
5.4%
n 5863
 
4.6%
, 5682
 
4.5%
i 5668
 
4.4%
c 5034
 
3.9%
v 5007
 
3.9%
l 4798
 
3.8%
r 4600
 
3.6%
Other values (82) 65649
51.4%

Most occurring categories

ValueCountFrequency (%)
(unknown) 127640
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
o 9756
 
7.6%
e 8731
 
6.8%
a 6852
 
5.4%
n 5863
 
4.6%
, 5682
 
4.5%
i 5668
 
4.4%
c 5034
 
3.9%
v 5007
 
3.9%
l 4798
 
3.8%
r 4600
 
3.6%
Other values (82) 65649
51.4%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 127640
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
o 9756
 
7.6%
e 8731
 
6.8%
a 6852
 
5.4%
n 5863
 
4.6%
, 5682
 
4.5%
i 5668
 
4.4%
c 5034
 
3.9%
v 5007
 
3.9%
l 4798
 
3.8%
r 4600
 
3.6%
Other values (82) 65649
51.4%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 127640
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
o 9756
 
7.6%
e 8731
 
6.8%
a 6852
 
5.4%
n 5863
 
4.6%
, 5682
 
4.5%
i 5668
 
4.4%
c 5034
 
3.9%
v 5007
 
3.9%
l 4798
 
3.8%
r 4600
 
3.6%
Other values (82) 65649
51.4%

node
Real number (ℝ)

High correlation 

Distinct7513
Distinct (%)94.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean7392.7119
Minimum1
Maximum32501
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:23.593614image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile388
Q12004
median4871
Q37840.5
95-th percentile31631.8
Maximum32501
Range32500
Interquartile range (IQR)5836.5

Descriptive statistics

Standard deviation8783.3234
Coefficient of variation (CV)1.1881057
Kurtosis3.1797945
Mean7392.7119
Median Absolute Deviation (MAD)2920
Skewness2.0783244
Sum58809023
Variance77146771
MonotonicityNot monotonic
2024-11-11T12:54:24.119033image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
237 5
 
0.1%
1381 3
 
< 0.1%
1442 3
 
< 0.1%
4166 3
 
< 0.1%
2870 3
 
< 0.1%
31131 3
 
< 0.1%
100 3
 
< 0.1%
115 3
 
< 0.1%
5084 3
 
< 0.1%
454 3
 
< 0.1%
Other values (7503) 7923
99.6%
ValueCountFrequency (%)
1 1
< 0.1%
3 1
< 0.1%
4 1
< 0.1%
5 1
< 0.1%
6 1
< 0.1%
9 1
< 0.1%
10 1
< 0.1%
11 1
< 0.1%
12 1
< 0.1%
13 1
< 0.1%
ValueCountFrequency (%)
32501 1
< 0.1%
32382 1
< 0.1%
32381 1
< 0.1%
32380 1
< 0.1%
32379 1
< 0.1%
32378 1
< 0.1%
32362 1
< 0.1%
32360 1
< 0.1%
32359 1
< 0.1%
32358 1
< 0.1%

cis
Real number (ℝ)

High correlation 

Distinct7951
Distinct (%)99.9%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean435159.36
Minimum33
Maximum5476944
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:24.293434image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum33
5-th percentile3696.7
Q118066.5
median34107
Q355270.5
95-th percentile5454437.5
Maximum5476944
Range5476911
Interquartile range (IQR)37204

Descriptive statistics

Standard deviation1420509.8
Coefficient of variation (CV)3.2643439
Kurtosis8.5881405
Mean435159.36
Median Absolute Deviation (MAD)18398
Skewness3.25321
Sum3.4616927 × 109
Variance2.0178481 × 1012
MonotonicityNot monotonic
2024-11-11T12:54:24.439240image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
19139 2
 
< 0.1%
3174 2
 
< 0.1%
35952 2
 
< 0.1%
5476754 2
 
< 0.1%
66182 1
 
< 0.1%
52867 1
 
< 0.1%
52869 1
 
< 0.1%
52868 1
 
< 0.1%
28827 1
 
< 0.1%
28884 1
 
< 0.1%
Other values (7941) 7941
99.8%
ValueCountFrequency (%)
33 1
< 0.1%
108 1
< 0.1%
109 1
< 0.1%
110 1
< 0.1%
111 1
< 0.1%
198 1
< 0.1%
199 1
< 0.1%
230 1
< 0.1%
240 1
< 0.1%
241 1
< 0.1%
ValueCountFrequency (%)
5476944 1
< 0.1%
5476934 1
< 0.1%
5476924 1
< 0.1%
5476914 1
< 0.1%
5476904 1
< 0.1%
5476894 1
< 0.1%
5476884 1
< 0.1%
5476874 1
< 0.1%
5476864 1
< 0.1%
5476854 1
< 0.1%

avgLat
Real number (ℝ)

High correlation 

Distinct7804
Distinct (%)98.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean50.02497
Minimum49.00786
Maximum50.95622
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:24.624889image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum49.00786
5-th percentile49.576128
Q149.844292
median50.043987
Q350.177763
95-th percentile50.482249
Maximum50.95622
Range1.94836
Interquartile range (IQR)0.3334711

Descriptive statistics

Standard deviation0.26886272
Coefficient of variation (CV)0.0053745704
Kurtosis0.017231416
Mean50.02497
Median Absolute Deviation (MAD)0.1641973
Skewness0.074172315
Sum397948.64
Variance0.072287164
MonotonicityNot monotonic
2024-11-11T12:54:24.969761image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
50.0761337 4
 
0.1%
50.0879364 3
 
< 0.1%
50.06065 2
 
< 0.1%
49.6777649 2
 
< 0.1%
50.2206573 2
 
< 0.1%
49.7420044 2
 
< 0.1%
49.8132 2
 
< 0.1%
49.95851 2
 
< 0.1%
50.0695648 2
 
< 0.1%
50.2020721 2
 
< 0.1%
Other values (7794) 7932
99.7%
ValueCountFrequency (%)
49.00786 1
< 0.1%
49.08151 1
< 0.1%
49.1168365 1
< 0.1%
49.1540527 1
< 0.1%
49.1591949 1
< 0.1%
49.1845245 1
< 0.1%
49.18656 1
< 0.1%
49.1932831 1
< 0.1%
49.2556 1
< 0.1%
49.2556152 1
< 0.1%
ValueCountFrequency (%)
50.95622 1
< 0.1%
50.95116 1
< 0.1%
50.9445572 1
< 0.1%
50.9120865 1
< 0.1%
50.90968 1
< 0.1%
50.9072952 1
< 0.1%
50.90445 1
< 0.1%
50.8918343 1
< 0.1%
50.87971 1
< 0.1%
50.87534 1
< 0.1%

avgLon
Real number (ℝ)

High correlation 

Distinct7922
Distinct (%)99.6%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean14.539107
Minimum12.864397
Maximum15.786157
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:25.524835image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum12.864397
5-th percentile13.782612
Q114.266703
median14.510729
Q314.876425
95-th percentile15.292543
Maximum15.786157
Range2.9217597
Interquartile range (IQR)0.609722

Descriptive statistics

Standard deviation0.4567476
Coefficient of variation (CV)0.031415107
Kurtosis-0.12784017
Mean14.539107
Median Absolute Deviation (MAD)0.3003197
Skewness-0.13756147
Sum115658.59
Variance0.20861837
MonotonicityNot monotonic
2024-11-11T12:54:25.653701image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
15.0984955 2
 
< 0.1%
14.01936 2
 
< 0.1%
14.7125244 2
 
< 0.1%
14.93759 2
 
< 0.1%
14.3706169 2
 
< 0.1%
14.1673908 2
 
< 0.1%
14.57659 2
 
< 0.1%
14.392519 2
 
< 0.1%
14.4030924 2
 
< 0.1%
14.5714912 2
 
< 0.1%
Other values (7912) 7935
99.7%
ValueCountFrequency (%)
12.864397 1
< 0.1%
12.8702087 1
< 0.1%
12.875968 1
< 0.1%
12.8830929 1
< 0.1%
12.8889828 1
< 0.1%
12.919836 1
< 0.1%
12.9446735 1
< 0.1%
12.9550972 1
< 0.1%
12.9600859 1
< 0.1%
12.9610386 1
< 0.1%
ValueCountFrequency (%)
15.7861567 1
< 0.1%
15.786087 1
< 0.1%
15.7558346 1
< 0.1%
15.73393 1
< 0.1%
15.6670752 1
< 0.1%
15.6167946 1
< 0.1%
15.5829706 1
< 0.1%
15.5773067 1
< 0.1%
15.5762663 1
< 0.1%
15.574542 1
< 0.1%

avgJtskX
Real number (ℝ)

High correlation 

Distinct7935
Distinct (%)99.7%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-735395.74
Minimum-850520.75
Maximum-647707.9
Zeros0
Zeros (%)0.0%
Negative7955
Negative (%)100.0%
Memory size124.3 KiB
2024-11-11T12:54:25.788138image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum-850520.75
5-th percentile-790887.67
Q1-755527.35
median-737080.1
Q3-711375.3
95-th percentile-681821.61
Maximum-647707.9
Range202812.85
Interquartile range (IQR)44152.05

Descriptive statistics

Standard deviation33070.928
Coefficient of variation (CV)-0.044970246
Kurtosis-0.24893571
Mean-735395.74
Median Absolute Deviation (MAD)21674.9
Skewness-0.10519433
Sum-5.8500731 × 109
Variance1.0936863 × 109
MonotonicityNot monotonic
2024-11-11T12:54:25.968216image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
-746083.75 2
 
< 0.1%
-707940 2
 
< 0.1%
-781056.75 2
 
< 0.1%
-740098.938 2
 
< 0.1%
-742898.5 2
 
< 0.1%
-781215.7 2
 
< 0.1%
-722079.1 2
 
< 0.1%
-742686.1 2
 
< 0.1%
-777237.4 2
 
< 0.1%
-744023.1 2
 
< 0.1%
Other values (7925) 7935
99.7%
ValueCountFrequency (%)
-850520.75 1
< 0.1%
-850095.9 1
< 0.1%
-849622.25 1
< 0.1%
-849088.8 1
< 0.1%
-848628.25 1
< 0.1%
-846922.25 1
< 0.1%
-845262.25 1
< 0.1%
-844510.1 1
< 0.1%
-844292.1 1
< 0.1%
-844152.563 1
< 0.1%
ValueCountFrequency (%)
-647707.9 1
< 0.1%
-647747.063 1
< 0.1%
-649855.6 1
< 0.1%
-651376.9 1
< 0.1%
-652589.5 1
< 0.1%
-654305.1 1
< 0.1%
-655402.75 1
< 0.1%
-655758.25 1
< 0.1%
-655829.25 1
< 0.1%
-655866.6 1
< 0.1%

avgJtskY
Real number (ℝ)

High correlation 

Distinct7917
Distinct (%)99.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-1050941
Minimum-1165330.4
Maximum-948531.1
Zeros0
Zeros (%)0.0%
Negative7955
Negative (%)100.0%
Memory size124.3 KiB
2024-11-11T12:54:26.133858image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum-1165330.4
5-th percentile-1099439.2
Q1-1072131.6
median-1048068.4
Q3-1032854.2
95-th percentile-1003124.3
Maximum-948531.1
Range216799.28
Interquartile range (IQR)39277.47

Descriptive statistics

Standard deviation29517.099
Coefficient of variation (CV)-0.028086353
Kurtosis-0.19738373
Mean-1050941
Median Absolute Deviation (MAD)19579.63
Skewness-0.010105599
Sum-8.3602356 × 109
Variance8.7125914 × 108
MonotonicityNot monotonic
2024-11-11T12:54:26.295627image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
-1097608 2
 
< 0.1%
-1048764.88 2
 
< 0.1%
-1086698.88 2
 
< 0.1%
-1053816 2
 
< 0.1%
-1086361 2
 
< 0.1%
-1088127.5 2
 
< 0.1%
-1047157.88 2
 
< 0.1%
-1084254.63 2
 
< 0.1%
-1044102.5 2
 
< 0.1%
-1045881.38 2
 
< 0.1%
Other values (7907) 7935
99.7%
ValueCountFrequency (%)
-1165330.38 1
< 0.1%
-1156769.5 1
< 0.1%
-1152938.13 1
< 0.1%
-1151487.5 1
< 0.1%
-1150462.75 1
< 0.1%
-1146675.38 1
< 0.1%
-1145013.5 1
< 0.1%
-1144415.63 1
< 0.1%
-1137557.38 1
< 0.1%
-1135094.88 1
< 0.1%
ValueCountFrequency (%)
-948531.1 1
< 0.1%
-949109.75 1
< 0.1%
-949751.9 1
< 0.1%
-953818.2 1
< 0.1%
-954015.8 1
< 0.1%
-954590.4 1
< 0.1%
-954979.1 1
< 0.1%
-956290.9 1
< 0.1%
-957364.9 1
< 0.1%
-957748.4 1
< 0.1%
Distinct1381
Distinct (%)17.4%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:26.911195image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length28
Median length22
Mean length7.8522942
Min length3

Characters and Unicode

Total characters62465
Distinct characters65
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique308 ?
Unique (%)3.9%

Sample

1st rowAdamov
2nd rowPraha
3rd rowPraha
4th rowPraha
5th rowPraha
ValueCountFrequency (%)
praha 1459
 
15.7%
příbram 90
 
1.0%
n.vlt 85
 
0.9%
hora 76
 
0.8%
n.sáz 73
 
0.8%
benešov 72
 
0.8%
dolní 65
 
0.7%
n.l 63
 
0.7%
kladno 60
 
0.6%
říčany 58
 
0.6%
Other values (1407) 7216
77.4%
2024-11-11T12:54:27.353626image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
a 5581
 
8.9%
e 4961
 
7.9%
o 4465
 
7.1%
r 3449
 
5.5%
n 3006
 
4.8%
i 2978
 
4.8%
c 2606
 
4.2%
v 2448
 
3.9%
h 2345
 
3.8%
l 2212
 
3.5%
Other values (55) 28414
45.5%

Most occurring categories

ValueCountFrequency (%)
(unknown) 62465
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 5581
 
8.9%
e 4961
 
7.9%
o 4465
 
7.1%
r 3449
 
5.5%
n 3006
 
4.8%
i 2978
 
4.8%
c 2606
 
4.2%
v 2448
 
3.9%
h 2345
 
3.8%
l 2212
 
3.5%
Other values (55) 28414
45.5%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 62465
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 5581
 
8.9%
e 4961
 
7.9%
o 4465
 
7.1%
r 3449
 
5.5%
n 3006
 
4.8%
i 2978
 
4.8%
c 2606
 
4.2%
v 2448
 
3.9%
h 2345
 
3.8%
l 2212
 
3.5%
Other values (55) 28414
45.5%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 62465
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 5581
 
8.9%
e 4961
 
7.9%
o 4465
 
7.1%
r 3449
 
5.5%
n 3006
 
4.8%
i 2978
 
4.8%
c 2606
 
4.2%
v 2448
 
3.9%
h 2345
 
3.8%
l 2212
 
3.5%
Other values (55) 28414
45.5%

mainTrafficType
Categorical

High correlation  Imbalance 

Distinct12
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
bus
6985 
train
 
585
tram
 
247
undefined
 
48
trolleybus
 
31
Other values (7)
 
59

Length

Max length10
Median length3
Mean length3.2641106
Min length3

Characters and Unicode

Total characters25966
Distinct characters18
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique4 ?
Unique (%)0.1%

Sample

1st rowbus
2nd rowtram
3rd rowbus
4th rowbus
5th rowmetroB

Common Values

ValueCountFrequency (%)
bus 6985
87.8%
train 585
 
7.4%
tram 247
 
3.1%
undefined 48
 
0.6%
trolleybus 31
 
0.4%
metroB 22
 
0.3%
metroC 18
 
0.2%
metroA 15
 
0.2%
metroBC 1
 
< 0.1%
metroAB 1
 
< 0.1%
Other values (2) 2
 
< 0.1%

Length

2024-11-11T12:54:27.828949image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
bus 6985
87.8%
train 585
 
7.4%
tram 247
 
3.1%
undefined 48
 
0.6%
trolleybus 31
 
0.4%
metrob 22
 
0.3%
metroc 18
 
0.2%
metroa 15
 
0.2%
metrobc 1
 
< 0.1%
metroab 1
 
< 0.1%
Other values (2) 2
 
< 0.1%

Most occurring characters

ValueCountFrequency (%)
u 7064
27.2%
b 7016
27.0%
s 7016
27.0%
r 923
 
3.6%
t 921
 
3.5%
a 832
 
3.2%
n 681
 
2.6%
i 633
 
2.4%
m 305
 
1.2%
e 186
 
0.7%
Other values (8) 389
 
1.5%

Most occurring categories

ValueCountFrequency (%)
(unknown) 25966
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
u 7064
27.2%
b 7016
27.0%
s 7016
27.0%
r 923
 
3.6%
t 921
 
3.5%
a 832
 
3.2%
n 681
 
2.6%
i 633
 
2.4%
m 305
 
1.2%
e 186
 
0.7%
Other values (8) 389
 
1.5%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 25966
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
u 7064
27.2%
b 7016
27.0%
s 7016
27.0%
r 923
 
3.6%
t 921
 
3.5%
a 832
 
3.2%
n 681
 
2.6%
i 633
 
2.4%
m 305
 
1.2%
e 186
 
0.7%
Other values (8) 389
 
1.5%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 25966
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
u 7064
27.2%
b 7016
27.0%
s 7016
27.0%
r 923
 
3.6%
t 921
 
3.5%
a 832
 
3.2%
n 681
 
2.6%
i 633
 
2.4%
m 305
 
1.2%
e 186
 
0.7%
Other values (8) 389
 
1.5%

isTrain
Boolean

Constant  Missing 

Distinct1
Distinct (%)0.2%
Missing7367
Missing (%)92.6%
Memory size124.3 KiB
True
 
588
(Missing)
7367 
ValueCountFrequency (%)
True 588
 
7.4%
(Missing) 7367
92.6%
2024-11-11T12:54:27.958117image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

id
Text

Unique 

Distinct7955
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:28.259896image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length9
Median length6
Mean length6.0612194
Min length3

Characters and Unicode

Total characters48217
Distinct characters11
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique7955 ?
Unique (%)100.0%

Sample

1st row7288/1
2nd row876/1
3rd row876/2
4th row876/4
5th row1274/1
ValueCountFrequency (%)
7288/1 1
 
< 0.1%
1040/102 1
 
< 0.1%
876/2 1
 
< 0.1%
876/4 1
 
< 0.1%
1274/1 1
 
< 0.1%
1029/1 1
 
< 0.1%
1029/2 1
 
< 0.1%
1040/1 1
 
< 0.1%
1040/2 1
 
< 0.1%
1040/3 1
 
< 0.1%
Other values (7945) 7945
99.9%
2024-11-11T12:54:29.007705image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
1 8402
17.4%
/ 7955
16.5%
2 6891
14.3%
3 4451
9.2%
4 3691
7.7%
6 3179
 
6.6%
9 3072
 
6.4%
7 3035
 
6.3%
0 2904
 
6.0%
5 2438
 
5.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 48217
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 8402
17.4%
/ 7955
16.5%
2 6891
14.3%
3 4451
9.2%
4 3691
7.7%
6 3179
 
6.6%
9 3072
 
6.4%
7 3035
 
6.3%
0 2904
 
6.0%
5 2438
 
5.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 48217
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 8402
17.4%
/ 7955
16.5%
2 6891
14.3%
3 4451
9.2%
4 3691
7.7%
6 3179
 
6.6%
9 3072
 
6.4%
7 3035
 
6.3%
0 2904
 
6.0%
5 2438
 
5.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 48217
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 8402
17.4%
/ 7955
16.5%
2 6891
14.3%
3 4451
9.2%
4 3691
7.7%
6 3179
 
6.6%
9 3072
 
6.4%
7 3035
 
6.3%
0 2904
 
6.0%
5 2438
 
5.1%

platform
Text

Missing 

Distinct64
Distinct (%)0.8%
Missing291
Missing (%)3.7%
Memory size124.3 KiB
2024-11-11T12:54:29.199651image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length2
Median length1
Mean length1.0199635
Min length1

Characters and Unicode

Total characters7817
Distinct characters29
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique16 ?
Unique (%)0.2%

Sample

1st row1
2nd rowA
3rd rowB
4th rowD
5th rowA
ValueCountFrequency (%)
a 2885
37.6%
b 2580
33.7%
1 708
 
9.2%
2 630
 
8.2%
c 241
 
3.1%
d 162
 
2.1%
3 53
 
0.7%
f 38
 
0.5%
4 37
 
0.5%
m2 31
 
0.4%
Other values (54) 299
 
3.9%
2024-11-11T12:54:29.476346image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
A 2888
36.9%
B 2583
33.0%
1 798
 
10.2%
2 684
 
8.8%
C 241
 
3.1%
D 162
 
2.1%
M 69
 
0.9%
3 63
 
0.8%
4 43
 
0.6%
5 39
 
0.5%
Other values (19) 247
 
3.2%

Most occurring categories

ValueCountFrequency (%)
(unknown) 7817
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
A 2888
36.9%
B 2583
33.0%
1 798
 
10.2%
2 684
 
8.8%
C 241
 
3.1%
D 162
 
2.1%
M 69
 
0.9%
3 63
 
0.8%
4 43
 
0.6%
5 39
 
0.5%
Other values (19) 247
 
3.2%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 7817
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
A 2888
36.9%
B 2583
33.0%
1 798
 
10.2%
2 684
 
8.8%
C 241
 
3.1%
D 162
 
2.1%
M 69
 
0.9%
3 63
 
0.8%
4 43
 
0.6%
5 39
 
0.5%
Other values (19) 247
 
3.2%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 7817
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
A 2888
36.9%
B 2583
33.0%
1 798
 
10.2%
2 684
 
8.8%
C 241
 
3.1%
D 162
 
2.1%
M 69
 
0.9%
3 63
 
0.8%
4 43
 
0.6%
5 39
 
0.5%
Other values (19) 247
 
3.2%
Distinct3959
Distinct (%)49.8%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:30.053551image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length42
Median length32
Mean length16.333752
Min length3

Characters and Unicode

Total characters129935
Distinct characters91
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique726 ?
Unique (%)9.1%

Sample

1st rowAdamov
2nd rowAlbertov
3rd rowAlbertov
4th rowAlbertov
5th rowAmetystová
ValueCountFrequency (%)
dolní 136
 
1.1%
mladá 117
 
0.9%
u 113
 
0.9%
bn 104
 
0.8%
kutná 84
 
0.7%
kralupy 77
 
0.6%
brandýs 72
 
0.6%
pz 69
 
0.6%
náměstí 62
 
0.5%
lhota 60
 
0.5%
Other values (4297) 11509
92.8%
2024-11-11T12:54:30.687859image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
o 10305
 
7.9%
e 8667
 
6.7%
a 6588
 
5.1%
n 6512
 
5.0%
, 5974
 
4.6%
i 5840
 
4.5%
l 5055
 
3.9%
v 4998
 
3.8%
c 4896
 
3.8%
r 4794
 
3.7%
Other values (81) 66306
51.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 129935
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
o 10305
 
7.9%
e 8667
 
6.7%
a 6588
 
5.1%
n 6512
 
5.0%
, 5974
 
4.6%
i 5840
 
4.5%
l 5055
 
3.9%
v 4998
 
3.8%
c 4896
 
3.8%
r 4794
 
3.7%
Other values (81) 66306
51.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 129935
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
o 10305
 
7.9%
e 8667
 
6.7%
a 6588
 
5.1%
n 6512
 
5.0%
, 5974
 
4.6%
i 5840
 
4.5%
l 5055
 
3.9%
v 4998
 
3.8%
c 4896
 
3.8%
r 4794
 
3.7%
Other values (81) 66306
51.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 129935
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
o 10305
 
7.9%
e 8667
 
6.7%
a 6588
 
5.1%
n 6512
 
5.0%
, 5974
 
4.6%
i 5840
 
4.5%
l 5055
 
3.9%
v 4998
 
3.8%
c 4896
 
3.8%
r 4794
 
3.7%
Other values (81) 66306
51.0%

lat
Real number (ℝ)

High correlation 

Distinct7658
Distinct (%)96.3%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean50.045962
Minimum49.08151
Maximum50.87979
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:30.914040image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum49.08151
5-th percentile49.573001
Q149.868391
median50.058086
Q350.203508
95-th percentile50.495497
Maximum50.87979
Range1.79828
Interquartile range (IQR)0.3351172

Descriptive statistics

Standard deviation0.27063182
Coefficient of variation (CV)0.0054076654
Kurtosis-0.1374126
Mean50.045962
Median Absolute Deviation (MAD)0.1633564
Skewness0.017509895
Sum398115.63
Variance0.073241582
MonotonicityNot monotonic
2024-11-11T12:54:31.424267image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
50.0455 3
 
< 0.1%
49.5035439 3
 
< 0.1%
50.0541649 3
 
< 0.1%
49.781868 3
 
< 0.1%
49.7907829 3
 
< 0.1%
50.0452347 3
 
< 0.1%
50.03045 3
 
< 0.1%
50.1303673 3
 
< 0.1%
49.7418442 3
 
< 0.1%
50.0303841 3
 
< 0.1%
Other values (7648) 7925
99.6%
ValueCountFrequency (%)
49.08151 1
< 0.1%
49.1167831 1
< 0.1%
49.11689 1
< 0.1%
49.15405 1
< 0.1%
49.15406 1
< 0.1%
49.1591225 1
< 0.1%
49.1592636 1
< 0.1%
49.1845245 1
< 0.1%
49.27779 1
< 0.1%
49.2777939 1
< 0.1%
ValueCountFrequency (%)
50.87979 1
< 0.1%
50.87963 1
< 0.1%
50.8754 1
< 0.1%
50.87528 1
< 0.1%
50.8638268 1
< 0.1%
50.86382 1
< 0.1%
50.7868233 1
< 0.1%
50.7858963 1
< 0.1%
50.7836723 1
< 0.1%
50.7835464 1
< 0.1%

lon
Real number (ℝ)

High correlation 

Distinct7809
Distinct (%)98.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean14.539717
Minimum12.864244
Maximum15.78631
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:31.610564image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum12.864244
5-th percentile13.823619
Q114.261834
median14.50825
Q314.869074
95-th percentile15.280566
Maximum15.78631
Range2.9220665
Interquartile range (IQR)0.60723975

Descriptive statistics

Standard deviation0.45328775
Coefficient of variation (CV)0.031175831
Kurtosis-0.0293705
Mean14.539717
Median Absolute Deviation (MAD)0.3067172
Skewness-0.14812697
Sum115663.45
Variance0.20546979
MonotonicityNot monotonic
2024-11-11T12:54:31.954846image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
14.0001907 3
 
< 0.1%
13.9774637 3
 
< 0.1%
14.5269966 3
 
< 0.1%
14.0341148 3
 
< 0.1%
15.3966589 3
 
< 0.1%
14.3214331 3
 
< 0.1%
13.8820763 2
 
< 0.1%
13.9794779 2
 
< 0.1%
13.9791431 2
 
< 0.1%
13.9242706 2
 
< 0.1%
Other values (7799) 7929
99.7%
ValueCountFrequency (%)
12.8642435 1
< 0.1%
12.8645506 1
< 0.1%
12.8702087 1
< 0.1%
12.8758936 1
< 0.1%
12.8760424 1
< 0.1%
12.8822222 1
< 0.1%
12.8839626 1
< 0.1%
12.8885708 1
< 0.1%
12.8893957 1
< 0.1%
12.9196014 1
< 0.1%
ValueCountFrequency (%)
15.78631 1
< 0.1%
15.7862339 1
< 0.1%
15.7860031 1
< 0.1%
15.78594 1
< 0.1%
15.7559061 1
< 0.1%
15.7557621 1
< 0.1%
15.7347717 1
< 0.1%
15.7330875 1
< 0.1%
15.6672764 1
< 0.1%
15.6668739 1
< 0.1%

jtskX
Real number (ℝ)

High correlation 

Distinct7822
Distinct (%)98.3%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-735044.26
Minimum-850532.8
Maximum-647698.8
Zeros0
Zeros (%)0.0%
Negative7955
Negative (%)100.0%
Memory size124.3 KiB
2024-11-11T12:54:32.127540image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum-850532.8
5-th percentile-788916.5
Q1-756336.63
median-736670.9
Q3-709802.75
95-th percentile-682467.96
Maximum-647698.8
Range202834
Interquartile range (IQR)46533.881

Descriptive statistics

Standard deviation32965.417
Coefficient of variation (CV)-0.044848207
Kurtosis-0.21998152
Mean-735044.26
Median Absolute Deviation (MAD)22622.3
Skewness-0.12975268
Sum-5.8472771 × 109
Variance1.0867187 × 109
MonotonicityNot monotonic
2024-11-11T12:54:32.328807image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
-750531.938 3
 
< 0.1%
-736168.4 3
 
< 0.1%
-778101.8 3
 
< 0.1%
-724920.4 2
 
< 0.1%
-750553.8 2
 
< 0.1%
-703891.9 2
 
< 0.1%
-786863.2 2
 
< 0.1%
-755174.438 2
 
< 0.1%
-741588.438 2
 
< 0.1%
-751483.25 2
 
< 0.1%
Other values (7812) 7932
99.7%
ValueCountFrequency (%)
-850532.8 1
< 0.1%
-850508.75 1
< 0.1%
-850095.9 1
< 0.1%
-849626.7 1
< 0.1%
-849617.75 1
< 0.1%
-849156.75 1
< 0.1%
-849020.9 1
< 0.1%
-848666.9 1
< 0.1%
-848589.563 1
< 0.1%
-846940.7 1
< 0.1%
ValueCountFrequency (%)
-647698.8 1
< 0.1%
-647716.938 1
< 0.1%
-647743.438 1
< 0.1%
-647750.7 1
< 0.1%
-649851.3 1
< 0.1%
-649859.9 1
< 0.1%
-651318.563 1
< 0.1%
-651435.2 1
< 0.1%
-656258.938 1
< 0.1%
-656284.3 1
< 0.1%

jtskY
Real number (ℝ)

High correlation 

Distinct7812
Distinct (%)98.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-1048634.1
Minimum-1156769.5
Maximum-957352.06
Zeros0
Zeros (%)0.0%
Negative7955
Negative (%)100.0%
Memory size124.3 KiB
2024-11-11T12:54:32.804479image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum-1156769.5
5-th percentile-1099035.6
Q1-1068103
median-1046338.8
Q3-1029952.3
95-th percentile-1001684.9
Maximum-957352.06
Range199417.44
Interquartile range (IQR)38150.69

Descriptive statistics

Standard deviation29550.81
Coefficient of variation (CV)-0.028180288
Kurtosis-0.29916811
Mean-1048634.1
Median Absolute Deviation (MAD)19485
Skewness-0.067897945
Sum-8.3418842 × 109
Variance8.7325039 × 108
MonotonicityNot monotonic
2024-11-11T12:54:33.023441image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
-1076871.25 3
 
< 0.1%
-1046686.69 3
 
< 0.1%
-1050322.63 3
 
< 0.1%
-1048139.69 2
 
< 0.1%
-1039733.63 2
 
< 0.1%
-1042082.88 2
 
< 0.1%
-1011797.69 2
 
< 0.1%
-1094660.75 2
 
< 0.1%
-1066512.38 2
 
< 0.1%
-1093739.88 2
 
< 0.1%
Other values (7802) 7932
99.7%
ValueCountFrequency (%)
-1156769.5 1
< 0.1%
-1152943.25 1
< 0.1%
-1152933 1
< 0.1%
-1151493 1
< 0.1%
-1151481.88 1
< 0.1%
-1150471.13 1
< 0.1%
-1150454.38 1
< 0.1%
-1146675.38 1
< 0.1%
-1135096.5 1
< 0.1%
-1135093.25 1
< 0.1%
ValueCountFrequency (%)
-957352.063 1
< 0.1%
-957377.75 1
< 0.1%
-957742.6 1
< 0.1%
-957754.2 1
< 0.1%
-959045.438 1
< 0.1%
-959046.1 1
< 0.1%
-968150.938 1
< 0.1%
-968162.8 1
< 0.1%
-968668.8 1
< 0.1%
-968673.7 1
< 0.1%

zone
Categorical

Distinct31
Distinct (%)0.4%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
P
965 
5
812 
6
784 
8
738 
7
722 
Other values (26)
3934 

Length

Max length3
Median length1
Mean length1.2365808
Min length0

Characters and Unicode

Total characters9837
Distinct characters14
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)< 0.1%

Sample

1st row8
2nd rowP
3rd rowP
4th rowP
5th rowP

Common Values

ValueCountFrequency (%)
P 965
12.1%
5 812
10.2%
6 784
9.9%
8 738
9.3%
7 722
9.1%
9 608
7.6%
3 574
7.2%
4 553
 
7.0%
1 418
 
5.3%
2 357
 
4.5%
Other values (21) 1424
17.9%

Length

2024-11-11T12:54:33.202325image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
p 965
12.1%
5 812
10.2%
6 784
9.9%
8 738
9.3%
7 722
9.1%
9 608
7.6%
3 574
7.2%
4 553
 
7.0%
1 418
 
5.3%
2 357
 
4.5%
Other values (20) 1422
17.9%

Most occurring characters

ValueCountFrequency (%)
P 1460
14.8%
1 987
10.0%
5 843
8.6%
6 820
8.3%
7 763
7.8%
8 756
7.7%
3 708
7.2%
, 707
7.2%
4 611
 
6.2%
9 609
 
6.2%
Other values (4) 1573
16.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 9837
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
P 1460
14.8%
1 987
10.0%
5 843
8.6%
6 820
8.3%
7 763
7.8%
8 756
7.7%
3 708
7.2%
, 707
7.2%
4 611
 
6.2%
9 609
 
6.2%
Other values (4) 1573
16.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 9837
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
P 1460
14.8%
1 987
10.0%
5 843
8.6%
6 820
8.3%
7 763
7.8%
8 756
7.7%
3 708
7.2%
, 707
7.2%
4 611
 
6.2%
9 609
 
6.2%
Other values (4) 1573
16.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 9837
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
P 1460
14.8%
1 987
10.0%
5 843
8.6%
6 820
8.3%
7 763
7.8%
8 756
7.7%
3 708
7.2%
, 707
7.2%
4 611
 
6.2%
9 609
 
6.2%
Other values (4) 1573
16.0%

wheelchairAccess
Categorical

Distinct3
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size124.3 KiB
unknown
5068 
notPossible
2505 
possible
 
382

Length

Max length11
Median length7
Mean length8.3076053
Min length7

Characters and Unicode

Total characters66087
Distinct characters13
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowunknown
2nd rowpossible
3rd rowpossible
4th rowpossible
5th rowunknown

Common Values

ValueCountFrequency (%)
unknown 5068
63.7%
notPossible 2505
31.5%
possible 382
 
4.8%

Length

2024-11-11T12:54:33.336910image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2024-11-11T12:54:33.463152image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
ValueCountFrequency (%)
unknown 5068
63.7%
notpossible 2505
31.5%
possible 382
 
4.8%

Most occurring characters

ValueCountFrequency (%)
n 17709
26.8%
o 10460
15.8%
s 5774
 
8.7%
u 5068
 
7.7%
k 5068
 
7.7%
w 5068
 
7.7%
i 2887
 
4.4%
b 2887
 
4.4%
l 2887
 
4.4%
e 2887
 
4.4%
Other values (3) 5392
 
8.2%

Most occurring categories

ValueCountFrequency (%)
(unknown) 66087
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
n 17709
26.8%
o 10460
15.8%
s 5774
 
8.7%
u 5068
 
7.7%
k 5068
 
7.7%
w 5068
 
7.7%
i 2887
 
4.4%
b 2887
 
4.4%
l 2887
 
4.4%
e 2887
 
4.4%
Other values (3) 5392
 
8.2%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 66087
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
n 17709
26.8%
o 10460
15.8%
s 5774
 
8.7%
u 5068
 
7.7%
k 5068
 
7.7%
w 5068
 
7.7%
i 2887
 
4.4%
b 2887
 
4.4%
l 2887
 
4.4%
e 2887
 
4.4%
Other values (3) 5392
 
8.2%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 66087
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
n 17709
26.8%
o 10460
15.8%
s 5774
 
8.7%
u 5068
 
7.7%
k 5068
 
7.7%
w 5068
 
7.7%
i 2887
 
4.4%
b 2887
 
4.4%
l 2887
 
4.4%
e 2887
 
4.4%
Other values (3) 5392
 
8.2%

gtfsIds
Unsupported

Rejected  Unsupported 

Missing0
Missing (%)0.0%
Memory size124.3 KiB

isMetro
Boolean

Constant  Missing 

Distinct1
Distinct (%)1.5%
Missing7887
Missing (%)99.1%
Memory size124.3 KiB
True
 
68
(Missing)
7887 
ValueCountFrequency (%)
True 68
 
0.9%
(Missing) 7887
99.1%
2024-11-11T12:54:33.560012image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

stops_lines_id
Real number (ℝ)

High correlation  Missing 

Distinct693
Distinct (%)8.8%
Missing99
Missing (%)1.2%
Infinite0
Infinite (%)0.0%
Mean625.27151
Minimum1
Maximum3360
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size124.3 KiB
2024-11-11T12:54:33.976129image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile92
Q1341
median516
Q3741
95-th percentile1762
Maximum3360
Range3359
Interquartile range (IQR)400

Descriptive statistics

Standard deviation538.76067
Coefficient of variation (CV)0.86164276
Kurtosis7.4467921
Mean625.27151
Median Absolute Deviation (MAD)206
Skewness2.4853283
Sum4912133
Variance290263.06
MonotonicityNot monotonic
2024-11-11T12:54:34.118956image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
1761 58
 
0.7%
785 43
 
0.5%
639 42
 
0.5%
1763 41
 
0.5%
1764 41
 
0.5%
637 40
 
0.5%
406 38
 
0.5%
739 38
 
0.5%
478 38
 
0.5%
415 38
 
0.5%
Other values (683) 7439
93.5%
(Missing) 99
 
1.2%
ValueCountFrequency (%)
1 11
0.1%
2 6
 
0.1%
3 16
0.2%
4 12
0.2%
5 14
0.2%
6 7
 
0.1%
7 18
0.2%
8 12
0.2%
9 18
0.2%
10 17
0.2%
ValueCountFrequency (%)
3360 2
 
< 0.1%
2888 23
0.3%
2876 5
 
0.1%
2861 37
0.5%
2856 7
 
0.1%
2853 9
 
0.1%
2850 11
 
0.1%
2849 15
0.2%
2847 9
 
0.1%
2846 25
0.3%

stops_lines_name
Text

Missing 

Distinct693
Distinct (%)8.8%
Missing99
Missing (%)1.2%
Memory size124.3 KiB
2024-11-11T12:54:34.518077image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length6
Median length3
Mean length2.9559572
Min length1

Characters and Unicode

Total characters23222
Distinct characters26
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique27 ?
Unique (%)0.3%

Sample

1st row741
2nd row741
3rd row781
4th row7
5th row14
ValueCountFrequency (%)
mhd 188
 
2.3%
1 69
 
0.9%
3 57
 
0.7%
4 53
 
0.7%
785 43
 
0.5%
639 42
 
0.5%
637 40
 
0.5%
2 39
 
0.5%
478 38
 
0.5%
415 38
 
0.5%
Other values (678) 7437
92.5%
2024-11-11T12:54:35.485786image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
4 2809
12.1%
3 2566
11.0%
5 2526
10.9%
1 2507
10.8%
7 2496
10.7%
6 2229
9.6%
2 1992
8.6%
9 1689
7.3%
0 1636
7.0%
8 1587
6.8%
Other values (16) 1185
5.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 23222
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
4 2809
12.1%
3 2566
11.0%
5 2526
10.9%
1 2507
10.8%
7 2496
10.7%
6 2229
9.6%
2 1992
8.6%
9 1689
7.3%
0 1636
7.0%
8 1587
6.8%
Other values (16) 1185
5.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 23222
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
4 2809
12.1%
3 2566
11.0%
5 2526
10.9%
1 2507
10.8%
7 2496
10.7%
6 2229
9.6%
2 1992
8.6%
9 1689
7.3%
0 1636
7.0%
8 1587
6.8%
Other values (16) 1185
5.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 23222
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
4 2809
12.1%
3 2566
11.0%
5 2526
10.9%
1 2507
10.8%
7 2496
10.7%
6 2229
9.6%
2 1992
8.6%
9 1689
7.3%
0 1636
7.0%
8 1587
6.8%
Other values (16) 1185
5.1%

stops_lines_type
Categorical

High correlation  Imbalance  Missing 

Distinct5
Distinct (%)0.1%
Missing99
Missing (%)1.2%
Memory size124.3 KiB
bus
6983 
tram
 
513
train
 
318
metro
 
30
trolleybus
 
12

Length

Max length10
Median length3
Mean length3.1645876
Min length3

Characters and Unicode

Total characters24861
Distinct characters13
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowbus
2nd rowbus
3rd rowbus
4th rowtram
5th rowtram

Common Values

ValueCountFrequency (%)
bus 6983
87.8%
tram 513
 
6.4%
train 318
 
4.0%
metro 30
 
0.4%
trolleybus 12
 
0.2%
(Missing) 99
 
1.2%

Length

2024-11-11T12:54:35.676079image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2024-11-11T12:54:35.789702image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
ValueCountFrequency (%)
bus 6983
88.9%
tram 513
 
6.5%
train 318
 
4.0%
metro 30
 
0.4%
trolleybus 12
 
0.2%

Most occurring characters

ValueCountFrequency (%)
b 6995
28.1%
u 6995
28.1%
s 6995
28.1%
t 873
 
3.5%
r 873
 
3.5%
a 831
 
3.3%
m 543
 
2.2%
i 318
 
1.3%
n 318
 
1.3%
e 42
 
0.2%
Other values (3) 78
 
0.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 24861
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
b 6995
28.1%
u 6995
28.1%
s 6995
28.1%
t 873
 
3.5%
r 873
 
3.5%
a 831
 
3.3%
m 543
 
2.2%
i 318
 
1.3%
n 318
 
1.3%
e 42
 
0.2%
Other values (3) 78
 
0.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 24861
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
b 6995
28.1%
u 6995
28.1%
s 6995
28.1%
t 873
 
3.5%
r 873
 
3.5%
a 831
 
3.3%
m 543
 
2.2%
i 318
 
1.3%
n 318
 
1.3%
e 42
 
0.2%
Other values (3) 78
 
0.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 24861
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
b 6995
28.1%
u 6995
28.1%
s 6995
28.1%
t 873
 
3.5%
r 873
 
3.5%
a 831
 
3.3%
m 543
 
2.2%
i 318
 
1.3%
n 318
 
1.3%
e 42
 
0.2%
Other values (3) 78
 
0.3%

stops_lines_direction
Text

Missing 

Distinct777
Distinct (%)9.9%
Missing99
Missing (%)1.2%
Memory size124.3 KiB
2024-11-11T12:54:36.351088image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length36
Median length26
Mean length15.260056
Min length4

Characters and Unicode

Total characters119883
Distinct characters78
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique123 ?
Unique (%)1.6%

Sample

1st rowZbýšov,Chlum
2nd rowČáslav,aut.st.
3rd rowŽleby,ZŠ
4th rowRadlická
5th rowŠpejchar
ValueCountFrequency (%)
nádraží 420
 
3.6%
sídliště 292
 
2.5%
benešov,terminál 244
 
2.1%
mladá 229
 
2.0%
boleslav,aut.st 178
 
1.5%
brandýs 153
 
1.3%
most 142
 
1.2%
praha,zličín 123
 
1.1%
příbram,aut.nádr 116
 
1.0%
beroun,autobusové 109
 
0.9%
Other values (892) 9594
82.7%
2024-11-11T12:54:36.832546image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
o 7764
 
6.5%
a 7723
 
6.4%
e 6951
 
5.8%
n 6374
 
5.3%
. 5498
 
4.6%
t 5191
 
4.3%
l 5179
 
4.3%
r 5125
 
4.3%
, 4942
 
4.1%
i 4348
 
3.6%
Other values (68) 60788
50.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 119883
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
o 7764
 
6.5%
a 7723
 
6.4%
e 6951
 
5.8%
n 6374
 
5.3%
. 5498
 
4.6%
t 5191
 
4.3%
l 5179
 
4.3%
r 5125
 
4.3%
, 4942
 
4.1%
i 4348
 
3.6%
Other values (68) 60788
50.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 119883
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
o 7764
 
6.5%
a 7723
 
6.4%
e 6951
 
5.8%
n 6374
 
5.3%
. 5498
 
4.6%
t 5191
 
4.3%
l 5179
 
4.3%
r 5125
 
4.3%
, 4942
 
4.1%
i 4348
 
3.6%
Other values (68) 60788
50.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 119883
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
o 7764
 
6.5%
a 7723
 
6.4%
e 6951
 
5.8%
n 6374
 
5.3%
. 5498
 
4.6%
t 5191
 
4.3%
l 5179
 
4.3%
r 5125
 
4.3%
, 4942
 
4.1%
i 4348
 
3.6%
Other values (68) 60788
50.7%
Distinct373
Distinct (%)21.4%
Missing6212
Missing (%)78.1%
Memory size124.3 KiB
2024-11-11T12:54:37.113476image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Length

Max length36
Median length25
Mean length14.729203
Min length4

Characters and Unicode

Total characters25673
Distinct characters72
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique86 ?
Unique (%)4.9%

Sample

1st rowZbýšov,ObÚ
2nd rowŘeporyjské náměstí
3rd rowTřebonice
4th rowMichelangelova
5th rowSídliště Řepy
ValueCountFrequency (%)
dolní 39
 
1.6%
český 35
 
1.4%
sídliště 34
 
1.4%
mladá 33
 
1.3%
hořovice,nám.b.němcové 25
 
1.0%
kostela 24
 
1.0%
tábor,aut.nádr 23
 
0.9%
benešov,terminál 23
 
0.9%
brandýs 21
 
0.8%
nový 19
 
0.8%
Other values (459) 2222
89.0%
2024-11-11T12:54:37.849979image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
e 1778
 
6.9%
o 1696
 
6.6%
n 1392
 
5.4%
a 1379
 
5.4%
. 1229
 
4.8%
, 1134
 
4.4%
l 1127
 
4.4%
t 1025
 
4.0%
i 996
 
3.9%
v 885
 
3.4%
Other values (62) 13032
50.8%

Most occurring categories

ValueCountFrequency (%)
(unknown) 25673
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 1778
 
6.9%
o 1696
 
6.6%
n 1392
 
5.4%
a 1379
 
5.4%
. 1229
 
4.8%
, 1134
 
4.4%
l 1127
 
4.4%
t 1025
 
4.0%
i 996
 
3.9%
v 885
 
3.4%
Other values (62) 13032
50.8%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 25673
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 1778
 
6.9%
o 1696
 
6.6%
n 1392
 
5.4%
a 1379
 
5.4%
. 1229
 
4.8%
, 1134
 
4.4%
l 1127
 
4.4%
t 1025
 
4.0%
i 996
 
3.9%
v 885
 
3.4%
Other values (62) 13032
50.8%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 25673
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 1778
 
6.9%
o 1696
 
6.6%
n 1392
 
5.4%
a 1379
 
5.4%
. 1229
 
4.8%
, 1134
 
4.4%
l 1127
 
4.4%
t 1025
 
4.0%
i 996
 
3.9%
v 885
 
3.4%
Other values (62) 13032
50.8%

stops_lines_isNight
Boolean

Constant  Missing 

Distinct1
Distinct (%)0.2%
Missing7391
Missing (%)92.9%
Memory size124.3 KiB
True
 
564
(Missing)
7391 
ValueCountFrequency (%)
True 564
 
7.1%
(Missing) 7391
92.9%
2024-11-11T12:54:37.980514image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Interactions

2024-11-11T12:54:15.446805image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:53:59.825070image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:01.680023image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:03.192085image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:04.865409image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:06.283764image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:07.824212image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:09.121114image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:10.795161image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:12.213519image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:14.041279image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:15.778328image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:53:59.942020image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:01.789686image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:03.290393image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:04.958904image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:06.390146image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:07.917165image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:09.500927image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:10.892721image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:12.328081image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:14.139539image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:15.938664image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:00.084578image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:01.892394image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:03.388153image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:05.049089image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:06.488703image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:08.003109image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:09.594284image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:10.981133image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:12.699008image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:14.231680image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:16.073031image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:00.445236image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:01.999207image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:03.714662image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:05.163277image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:06.602456image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:08.215140image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:09.697193image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:11.078106image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:12.818642image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:14.343721image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:16.174646image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:00.559792image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:02.122567image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:03.862136image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:05.266303image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:06.697466image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:08.454363image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:09.795327image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:11.168669image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:12.912563image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:14.439359image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:16.291642image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:00.665359image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:02.232311image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:03.972466image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:05.396021image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:06.806896image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:08.559669image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:09.897539image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:11.503900image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:13.021785image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:14.822109image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:16.386465image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:00.757128image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:02.327952image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:04.065964image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:05.488814image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:06.901785image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:08.641967image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:09.995227image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:11.643950image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:13.116231image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:14.916932image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:16.495564image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:00.856010image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:02.655242image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:04.166876image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:05.602504image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:07.004066image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:08.736697image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:10.094581image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:11.753625image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:13.337807image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:15.017737image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:16.603216image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:00.954169image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:02.793496image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:04.265989image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:05.724546image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:07.384748image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:08.826989image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:10.186809image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:11.858304image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:13.662997image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:15.128168image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:17.024064image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:01.070596image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:02.891893image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:04.373812image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:05.829259image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:07.496636image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:08.928232image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:10.565158image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:11.979381image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:13.827114image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:15.235163image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:17.184467image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:01.197739image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:03.096660image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:04.487488image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:05.928612image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:07.605428image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:09.024981image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:10.694805image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:12.104767image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:13.936090image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
2024-11-11T12:54:15.347172image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/

Correlations

2024-11-11T12:54:38.057485image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
avgJtskXavgJtskYavgLatavgLoncisdistrictCodeidosCategoryjtskXjtskYlatlonmainTrafficTypenodestops_lines_idstops_lines_typewheelchairAccesszone
avgJtskX1.0000.0430.1730.993-0.0710.6990.0800.013-0.024-0.0200.0140.1330.0460.0160.0430.0270.096
avgJtskY0.0431.0000.988-0.0640.0500.7360.104-0.008-0.012-0.013-0.0090.105-0.1450.0250.0400.0410.066
avgLat0.1730.9881.0000.0670.0480.7310.084-0.004-0.015-0.016-0.0050.098-0.1590.0260.0260.0130.077
avgLon0.993-0.0640.0671.000-0.0800.7060.1010.013-0.020-0.0170.0140.1350.0680.0130.0350.0270.091
cis-0.0710.0500.048-0.0801.0000.1820.998-0.0090.0400.038-0.0130.996-0.337-0.0390.0450.0000.039
districtCode0.6990.7360.7310.7060.1821.0000.1820.1030.1050.1150.1020.2130.6470.0850.0710.0850.096
idosCategory0.0800.1040.0840.1010.9980.1821.0000.0410.0000.0270.0620.9970.0820.0230.0460.0000.039
jtskX0.013-0.008-0.0040.013-0.0090.1030.0411.0000.1020.2250.9930.0020.029-0.0410.0510.2820.429
jtskY-0.024-0.012-0.015-0.0200.0400.1050.0000.1021.0000.989-0.0010.034-0.005-0.0060.0320.3390.413
lat-0.020-0.013-0.016-0.0170.0380.1150.0270.2250.9891.0000.1230.038-0.001-0.0110.0400.3260.433
lon0.014-0.009-0.0050.014-0.0130.1020.0620.993-0.0010.1231.0000.0230.031-0.0420.0390.2930.423
mainTrafficType0.1330.1050.0980.1350.9960.2130.9970.0020.0340.0380.0231.0000.1590.0080.0640.0000.030
node0.046-0.145-0.1590.068-0.3370.6470.0820.029-0.005-0.0010.0310.1591.000-0.0030.0120.0250.073
stops_lines_id0.0160.0250.0260.013-0.0390.0850.023-0.041-0.006-0.011-0.0420.008-0.0031.0000.5510.0100.080
stops_lines_type0.0430.0400.0260.0350.0450.0710.0460.0510.0320.0400.0390.0640.0120.5511.0000.0100.092
wheelchairAccess0.0270.0410.0130.0270.0000.0850.0000.2820.3390.3260.2930.0000.0250.0100.0101.0000.419
zone0.0960.0660.0770.0910.0390.0960.0390.4290.4130.4330.4230.0300.0730.0800.0920.4191.000

Missing values

2024-11-11T12:54:17.420614image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
A simple visualization of nullity by column.
2024-11-11T12:54:18.244281image/svg+xmlMatplotlib v3.8.0, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.

Sample

namedistrictCodeidosCategoryidosNamefullNameuniqueNamenodecisavgLatavgLonavgJtskXavgJtskYmunicipalitymainTrafficTypeisTrainidplatformaltIdosNamelatlonjtskXjtskYzonewheelchairAccessgtfsIdsisMetrostops_lines_idstops_lines_namestops_lines_typestops_lines_directionstops_lines_direction2stops_lines_isNight
0AdamovKH301003.0AdamovAdamovAdamov7288.033.049.85810515.408134-675931.563-1077494.13AdamovbusNaN7288/11Adamov49.85810515.408134-675931.563-1077494.138unknown[U7288Z1]NaN741.0741busZbýšov,ChlumZbýšov,ObÚNaN
1AlbertovAB301003.0AlbertovAlbertovAlbertov876.058936.050.06791714.420799-743138.300-1045162.44PrahatramNaN876/1AAlbertov50.06724514.421648-743088.400-1045244.69Ppossible[U876Z1P]NaN741.0741busČáslav,aut.st.NaNNaN
2AmetystováAB301003.0AmetystováAmetystováAmetystová1274.058937.049.98820014.362217-748508.300-1053371.25PrahabusNaN876/2BAlbertov50.06868414.420452-743151.300-1045074.50Ppossible[U876Z2P]NaN781.0781busŽleby,ZŠNaNNaN
3AmforováAB301003.0AmforováAmforováAmforová1029.047715.050.04178014.327298-750168.750-1047125.06PrahabusNaN876/4DAlbertov50.06782014.420298-743175.300-1045168.13Ppossible[U876Z4P]NaN7.07tramRadlickáNaNNaN
4AndělAB301003.0AndělAndělAnděl1040.058759.050.07126014.403365-744324.000-1044624.06PrahametroBNaN1274/1AAmetystová49.98820014.362217-748508.300-1053371.25Punknown[U1274Z1P]NaN14.014tramŠpejcharNaNNaN
5Andělská Hora,dolní obecKV301003.0Andělská Hora,dolní obecAndělská Hora,dolní obecAndělská Hora,dolní obec32266.0108.050.20808812.955097-844510.100-1014439.13Andělská HorabusNaN1029/1AAmforová50.04185014.327284-750168.700-1047117.00P,0unknown[U1029Z1P, U1029Z1]NaN18.018tramNádraží PodbabaNaNNaN
6Andělská Hora,horní obecKV301003.0Andělská Hora,horní obecAndělská Hora,horní obecAndělská Hora,horní obec32265.0109.050.20454412.961039-844152.563-1014894.25Andělská HorabusNaN1029/2BAmforová50.04170614.327312-750168.800-1047133.13P,0unknown[U1029Z2P, U1029Z2]NaN93.093tramSídliště ĎábliceNaNTrue
7Andělská Hora,chatyKV301003.0Andělská Hora,chatyAndělská Hora,chatyAndělská Hora,chaty32267.0110.050.20709612.944674-845262.250-1014432.13Andělská HorabusNaN1040/1AAnděl (ul. Plzeňská)50.07193014.403631-744294.938-1044552.69Ppossible[U1040Z1P]NaN95.095tramVozovna KobylisyNaNTrue
8Andělská Hora,rozc.KV301003.0Andělská Hora,rozc.Andělská Hora,rozcestíAndělská Hora,rozc.32163.0111.050.20036712.960086-844292.100-1015342.81Andělská HorabusNaN1040/2BAnděl (ul. Plzeňská)50.07195314.402808-744352.938-1044541.94Ppossible[U1040Z2P]NaN14.014tramSpořilovNaNNaN
9Antala StaškaAB301003.0Antala StaškaAntala StaškaAntala Staška950.057405.050.04160714.444363-741865.200-1048291.00PrahabusNaN1040/3CAnděl (ul. Nádražní)50.07180414.404228-744254.500-1044572.13Ppossible[U1040Z3P]NaN18.018tramVozovna PankrácNaNNaN
namedistrictCodeidosCategoryidosNamefullNameuniqueNamenodecisavgLatavgLonavgJtskXavgJtskYmunicipalitymainTrafficTypeisTrainidplatformaltIdosNamelatlonjtskXjtskYzonewheelchairAccessgtfsIdsisMetrostops_lines_idstops_lines_namestops_lines_typestops_lines_directionstops_lines_direction2stops_lines_isNight
7945Žleby,Markovice,lomKH301003.0Žleby,Markovice,lomŽleby,Markovice,lomŽleby,Markovice,lom7229.042983.049.89611015.459562-671743.750-1073754.00ŽlebybusNaN939/2BNa Havránce50.00645014.409917-744843.063-1051828.38Punknown[U939Z2P]NaN767.0767busDolní SlivnoNaNNaN
7946Žleby,nám.KH301003.0Žleby,nám.Žleby,náměstíŽleby,nám.7226.042978.049.88915015.484407-670066.800-1074740.75ŽlebybusNaN939/3CNa Havránce50.00604614.409779-744859.000-1051871.38Punknown[U939Z3P]NaN431.0431busBoreč,ŽebiceSkalsko,návesNaN
7947Žleby,SibiřKH301003.0Žleby,SibiřŽleby,SibiřŽleby,Sibiř7227.042979.049.88916415.471287-671002.250-1074623.75ŽlebybusNaN939/4DNa Havránce50.00601214.409427-744884.500-1051871.75Punknown[U939Z4P]NaN699.0699busMladá Boleslav,aut.st.NaNNaN
7948Žleby,ŠumavaKH301003.0Žleby,ŠumavaŽleby,ŠumavaŽleby,Šumava7243.042977.049.89122815.490034-669637.400-1074561.00ŽlebybusNaN404/1ANa Homoli50.07632414.530346-735242.438-1045299.38Ppossible[U404Z1P]NaN767.0767busBeznoMladá Boleslav,aut.st.NaN
7949Žleby,ZehubyKH301003.0Žleby,ZehubyŽleby,ZehubyŽleby,Zehuby7245.042985.049.87013615.482277-670477.438-1076820.63ŽlebybusNaN404/2BNa Homoli50.07613814.530669-735222.250-1045322.75Ppossible[U404Z2P]NaN769.0769busRokytovecBeznoNaN
7950Žleby,ZŠKH301003.0Žleby,ZŠŽleby,ZŠŽleby,ZŠ7225.042981.049.88929015.488659-669761.700-1074762.50ŽlebybusNaN404/3CNa Homoli50.07617014.530213-735254.063-1045314.63P,0unknown[U404Z3P, U404Z3]NaN1243.0R43trainMladá Boleslav městoTurnovNaN
7951ŽloukoviceBE600003.0ŽloukoviceŽloukoviceŽloukovice3273.05476054.050.01601813.955886-776917.900-1046235.75NižbortrainTrue404/4DNa Homoli50.07649214.530392-735236.600-1045281.25P,0unknown[U404Z4P, U404Z4]NaN1243.0R43trainPraha hl.n.NaNNaN
7952ŽluticeKV600003.0ŽluticeŽluticeŽlutice32362.05473365.050.08460013.159661-832185.700-1030266.50ŽluticetrainTrue599/1ANa Hroudě50.07050714.488700-738283.563-1045537.56P,0possible[U599Z1P]NaN1303.0S3trainPraha hl.n.VšetatyNaN
7953ŽupanovicePB301003.0ŽupanoviceŽupanoviceŽupanovice5870.043027.049.70690014.298495-757349.900-1083728.63ŽupanovicebusNaN599/2BNa Hroudě50.07000014.489271-738250.700-1045598.94P,0possible[U599Z2P]NaN1303.0S3trainMladá Boleslav hl.n.NaNNaN
7954ŽvahovAB301003.0ŽvahovŽvahovŽvahov1155.059420.050.04398714.401451-744874.000-1047610.00PrahabusNaN406/1ANa Hřebenech50.05182014.428451-742839.600-1047010.88Punknown[U406Z1P]NaN431.0431busLysá n.L.,žel.st.Předměřice n.Jiz.,u kostelaNaN